The cystic fibrosis transmembrane conductance regulator (CFTR) architecture consists of two membrane spanning domains (MSD1 and -2), two nucleotide binding domains (NBD1 and -2), and a regulatory (R) domain. Several point mutations lead to the channel misprocessing, with limited structural perturbation of the mutant domain. To gain more insight into the basis of CFTR folding defect, the contribution of domain-wise and cooperative domain folding was assessed by determining 1) the minimal domain combination that is recognized as native and can efficiently escape the endoplasmic reticulum (ER) retention and 2) the impact of mutation on the conformational coupling among domains. One-, two-, three-, and most of the four-domain assemblies were retained at the ER. Solubilization mutations, however, rescued the NBD1 processing defect conceivably by thermodynamic stabilization. The smallest folding unit that traversed the secretory pathway was composed of MSD1-NBD1-R-MSD2 as a linear or split polypeptide. Cystic fibrosis-causing missense mutations in the MSD1, NBD1, MSD2, and NBD2 caused conformational defect in multiple domains. We propose that cooperative posttranslational folding is required for domain stabilization and provides a plausible explanation for the global misfolding caused by point mutations dispersed along the full-length CFTR.
INTRODUCTIONCystic fibrosis (CF), the most common genetic disease in the Caucasian population, is caused by the impaired functional expression of cystic fibrosis transmembrane conductance regulator (CFTR), a cAMP-regulated chloride channel that belongs to the ATP-binding cassette (ABC) transporter superfamily (Riordan et al., 1989). The distinct domain organization of CFTR is hallmarked by the acquisition of a regulatory (R) domain, connecting the two halves of the channel, each containing a membrane spanning domain (MSD) and a nucleotide binding domain (NBD) (MSD1-NBD1 and MSD2-NBD2) (Riordan et al., 1989;Sheppard and Welsh, 1999). The regulatory (R) domain is largely unstructured (Ostedgaard et al., 2000a), and, in coordination with the NBDs, regulates the gating of CFTR (Riordan, 2005). After cotranslational insertion into the ER, the nascent CFTR chain undergoes inefficient conformational maturation, mediated by molecular chaperones that require cytoplasmic ATP (Lukacs et al., 1994;Meacham et al., 1999;Oberdorf et al., 2005). Multiple quality control checkpoints ensure that native channels enter the secretory pathway via COPII transport vesicles (Wang et al., 2004;Wang et al., 2006;Younger et al., 2006), whereas partially folded molecules are eliminated by the endoplasmic reticulum (ER)-associated degradation (ERAD), using the ubiquitin-proteasome system (Kopito, 1999;Nakatsukasa and Brodsky, 2008).CFTR folding intermediates and off-pathway conformers are recognized by molecular chaperones, presumably by their association with exposed hydrophobic segments in the cytosol or the ER lumen (Laney and Hochstrasser, 1999;Meacham et al., 1999Meacham et al., , 2001Youker et al., 2004;Y...