Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Electric vehicles (EVs) play a crucial role in tackling environmental issues in the transportation industry. The incorporation of effective charging infrastructure is crucial in promoting the broad acceptance of electric vehicles (EVs). This work investigates the optimization of the location of wireless charging infrastructure in urban contexts using genetic algorithms (GAs). The location data, which includes latitude and longitude coordinates, showed a wide range of spatial distributions that are ideal for deploying charging stations. These distributions display variances that are favorable for strategically placing the infrastructure. The examination of power consumption data revealed significant variations in energy demand across different sites, ranging from 180 kWh to 300 kWh. These differences indicate that each location has its own distinct energy needs. The population density statistics exhibited a spectrum of values, ranging from 600 individuals per square unit. The population density is 1200 persons per square kilometer. The abbreviation "km" refers to kilometers, which is used to indicate different levels of prospective electric vehicle (EV) users. In addition, the distance data provided information about the lengths between prospective locations for charging stations, which varied from 400 km to 1200 km. These distances had an impact on the concerns of connection and transmission efficiency. The research highlights the intricate nature of the elements that affect the ideal location of infrastructure, underlining the need for a methodical approach to optimization. Integrating these statistics provides a foundation for developing an objective function in the GA framework to optimize the location of charging infrastructure. The study's results provide valuable understanding of the many factors that influence the location of charging infrastructure. The goal is to promote the development of efficient and easily accessible electric vehicle charging networks in metropolitan areas.
Electric vehicles (EVs) play a crucial role in tackling environmental issues in the transportation industry. The incorporation of effective charging infrastructure is crucial in promoting the broad acceptance of electric vehicles (EVs). This work investigates the optimization of the location of wireless charging infrastructure in urban contexts using genetic algorithms (GAs). The location data, which includes latitude and longitude coordinates, showed a wide range of spatial distributions that are ideal for deploying charging stations. These distributions display variances that are favorable for strategically placing the infrastructure. The examination of power consumption data revealed significant variations in energy demand across different sites, ranging from 180 kWh to 300 kWh. These differences indicate that each location has its own distinct energy needs. The population density statistics exhibited a spectrum of values, ranging from 600 individuals per square unit. The population density is 1200 persons per square kilometer. The abbreviation "km" refers to kilometers, which is used to indicate different levels of prospective electric vehicle (EV) users. In addition, the distance data provided information about the lengths between prospective locations for charging stations, which varied from 400 km to 1200 km. These distances had an impact on the concerns of connection and transmission efficiency. The research highlights the intricate nature of the elements that affect the ideal location of infrastructure, underlining the need for a methodical approach to optimization. Integrating these statistics provides a foundation for developing an objective function in the GA framework to optimize the location of charging infrastructure. The study's results provide valuable understanding of the many factors that influence the location of charging infrastructure. The goal is to promote the development of efficient and easily accessible electric vehicle charging networks in metropolitan areas.
This study investigates the use of reinforcement learning (RL) techniques as a dynamic control mechanism to enhance the management of energy storage in smart grid systems. The research aims to optimize the efficiency of energy storage operations by analyzing collected data from different time intervals in a simulated smart grid scenario. An evaluation of the energy storage status reveals a consistent upward trend in the quantity of stored energy, with a 30% cumulative growth across time intervals. An examination of the demand and supply of the grid indicates a persistent insufficiency of energy, with an average shortfall of 15% in meeting the requirements of the system. Through the use of reinforcement learning (RL) methodologies, the system exhibits a remarkable 450% improvement in cumulative rewards, providing substantiation of its capacity to acquire knowledge and adjust its behavior over time. The system's actions indicate a purposeful shift in strategy, with 75% of instances involving charging procedures, emphasizing a commitment to energy preservation and the buildup of stored energy. Despite a shift in approach, persistent disparities between grid demand and supply need the implementation of more accurate technologies for effective energy management. The findings highlight the effectiveness of using reinforcement learning (RL) for managing energy storage in smart grids. This approach improves energy reserves and optimizes energy storage by altering actions accordingly. These insights contribute to the advancement of adaptive energy management strategies, resulting in the development of sustainable and resilient smart grid infrastructures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with đź’™ for researchers
Part of the Research Solutions Family.