Everyday tasks use sensors to monitor and provide information about processes in different scenarios, such as monitoring devices in manufacturing or homes. Sensors need to communicate, with or without wires, while providing secure information. Power can be derived from various energy sources, such as batteries, electrical power grids, and energy harvesting. Energy harvesting is a promising way to provide a sustainable and renewable source to power sensors by scavenging and converting energy from ambient energy sources. However, low energy is harvested through these methods. Therefore, it is becoming a challenge to design and deploy wireless sensor networks while ensuring the sensors have enough power to perform their tasks and communicate with each other through careful management and optimization, matching energy supply with demand. For this reason, data cryptography and authentication are needed to protect sensor communication. This paper studies how energy harvested with microbial fuel cells can be employed in algorithms used in data protection during sensor communication.