Abstract:In networked driving simulation, two or more human drivers participate interactively within a shared virtual environment. Thereby, typical applications of driving simulation can be extended to consider multi-driver scenarios, where a much closer approximation of reality with its unpredictability is achieved. However, the utilized network is typically prone to a considerable amount of message traffic. In addition to restricted system scalability, the resulting degradation of network performance leads to invalid simulation outcomes or unacceptable system behavior. High-Level Architecture (HLA) is the IEEE standard 1516 that provides specific guidelines for networked simulation. Data distribution management (DDM) is one of the service groups provided by the HLA standard. The aim of the DDM service is to reduce network traffic and to save effort required to process unnecessary received data. However, existing approaches for current DDM implementations show major drawbacks in terms of utilization complexity, inefficiency, and yet added network overhead. This paper presents a new concept of an interest manager that takes over the DDM functionality and avoids these drawbacks. Simulation data is exchanged between the participating driving simulators only when it is necessary according to the driving situations. The interest manager was implemented and its efficient functionality was validated by analyzing the network load of two driving maneuvers with and without the interest manager.