Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
This study aims to develop a nonparametric mixed exponentially weighted moving average-moving average (NPEWMA-MA) sign control chart for monitoring shifts in process location, particularly when the distribution of a critical quality characteristic is either unknown or non-normal. In literature, the variance expression of the mixed exponentially weighted moving average-moving average (EWMA-MA) statistic is calculated by allowing sequential moving averages to be independent, and thus the exclusion of covariance terms results in an inaccurate variance expression. Furthermore, the effectiveness of the EWMA-MA control chart deteriorates when the distribution of a critical quality characteristic deviates from normality. The proposed NPEWMA-MA sign control chart addresses these by utilizing the corrected variance of the EWMA-MA statistic and incorporating the nonparametric sign test into the EWMA-MA charting structure. The chart integrates the moving average (MA) statistic into the exponentially weighted moving average (EWMA) statistic. The EWMA-MA charting statistic assigns more weight to recent w samples, with weights for previous observations decling exponentially. Monte Carlo simulations assess the chart’s performance using various run length (RL) characteristics such as average run length (ARL), standard deviation of run length (SDRL), and median run length (MRL). Additional measures for overall performance include the average extra quadratic loss (AEQL) and relative mean index (RMI). The proposed NPEWMA-MA sign control chart demonstrates superior performance compared to existing nonparametric control charts across different symmetrical and asymmetric distributions. It efficiently detects process shifts, as validated through both a simulated study and a real-life example from a combined cycle power plant.
This study aims to develop a nonparametric mixed exponentially weighted moving average-moving average (NPEWMA-MA) sign control chart for monitoring shifts in process location, particularly when the distribution of a critical quality characteristic is either unknown or non-normal. In literature, the variance expression of the mixed exponentially weighted moving average-moving average (EWMA-MA) statistic is calculated by allowing sequential moving averages to be independent, and thus the exclusion of covariance terms results in an inaccurate variance expression. Furthermore, the effectiveness of the EWMA-MA control chart deteriorates when the distribution of a critical quality characteristic deviates from normality. The proposed NPEWMA-MA sign control chart addresses these by utilizing the corrected variance of the EWMA-MA statistic and incorporating the nonparametric sign test into the EWMA-MA charting structure. The chart integrates the moving average (MA) statistic into the exponentially weighted moving average (EWMA) statistic. The EWMA-MA charting statistic assigns more weight to recent w samples, with weights for previous observations decling exponentially. Monte Carlo simulations assess the chart’s performance using various run length (RL) characteristics such as average run length (ARL), standard deviation of run length (SDRL), and median run length (MRL). Additional measures for overall performance include the average extra quadratic loss (AEQL) and relative mean index (RMI). The proposed NPEWMA-MA sign control chart demonstrates superior performance compared to existing nonparametric control charts across different symmetrical and asymmetric distributions. It efficiently detects process shifts, as validated through both a simulated study and a real-life example from a combined cycle power plant.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.