Steel multistorey 3D frames are commonly used in business and residential buildings, industrial sheds, warehouses, etc. The design optimization of tall steel buildings is usually governed by horizontal loadings, such as, wind load, as well as its dynamic behavior, for which the structure must have the stiffness and stability in accordance with the safety criteria established by codes. This chapter deals with sizing structural optimization problems, concerning weight minimization of 3D steel frames, considering natural frequencies of vibration as well as allowable displacements as the constraints of the optimization problem. The discrete design variables are to be chosen from commercial profiles tables. A differential evolution (DE) is the search algorithm adopted coupled to an adaptive penalty method (APM) to handle the constraints. Three different 3D frames are optimized, presenting very interesting results.