2023
DOI: 10.1002/tee.23787
|View full text |Cite
|
Sign up to set email alerts
|

An Enhanced Interval‐Based Approach for Anomaly Detection in Time Series

Abstract: Since anomalies are usually caused by changes in shape and amplitude in time series data, and most of the interval‐based methods utilized appear in the literature from a global perspective to detect anomalies. Nevertheless, the anomalies are also usually caused by local changes in shape and amplitude. Following these limitations, an enhanced interval‐based approach based on the interval information granules with the principle of justifiable granularity, viz., the EIA method, is formulated in this study for ano… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2023
2023
2023
2023

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 32 publications
0
0
0
Order By: Relevance