2019
DOI: 10.3390/en12193799
|View full text |Cite
|
Sign up to set email alerts
|

An Enhanced Method to Assess MPC Performance Based on Multi-Step Slow Feature Analysis

Abstract: Due to the wide application of model predictive control (MPC) in industrial processes, the assessment of MPC performance is essential to ensure product quality and improve energy efficiency. Recently, the slow feature analysis (SFA) algorithm has been successfully applied to assess the performance of MPC. However, the disadvantage of the traditional SFA-based predictable index is that it can only extract one-step predictable information in the monitored variables. In order to better mine the predictable inform… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2020
2020
2020
2020

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
(1 citation statement)
references
References 40 publications
0
1
0
Order By: Relevance
“…An interesting approach using novel, multivariate statistical technology called Slow Feature Analysis (SFA) has been proposed to separate temporal slow features from process variables. It was firstly used for diagnostics, and then extended to the MPC assessment task [154], lately followed by further modifications [155,156]. The approach enables monitoring both steady-state and dynamic responses.…”
Section: Data-driven Approachesmentioning
confidence: 99%
“…An interesting approach using novel, multivariate statistical technology called Slow Feature Analysis (SFA) has been proposed to separate temporal slow features from process variables. It was firstly used for diagnostics, and then extended to the MPC assessment task [154], lately followed by further modifications [155,156]. The approach enables monitoring both steady-state and dynamic responses.…”
Section: Data-driven Approachesmentioning
confidence: 99%