Interfacial charge recombination is a main issue causing the efficiency loss of the perovskite solar cells (PSCs). Here, ferroelectric Ba0.75Sr0.25TiO3 (BST) is introduced as a polarization tunable layer to promote the interfacial charge transfer of the PSCs. The coexistence of ferroelectric polarization and charge carriers in BST is confirmed by density functional theory (DFT) calculations. Experimental characterization demonstrates the polarization reversal and the existence of domain in BST film. The BST film conductivity is tested as 2.98×10-4 S/cm, which is comparable to the TiO2 being used as the electron transporting layer (ETL) in PSCs. The calculations results prove that BST can be introduced into the PSCs and the interfacial charge transfer can be tuned by ferroelectric polarization. Thus, we fabricated the BST-based PSCs with a champion power conversion efficiency (PCE) of 19.05% after poling, which is higher for 4% than that without poling.