2021
DOI: 10.1016/j.socl.2021.100020
|View full text |Cite
|
Sign up to set email alerts
|

An ensemble machine learning model for the prediction of danger zones: Towards a global counter-terrorism

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
8
0
1

Year Published

2021
2021
2024
2024

Publication Types

Select...
5
4

Relationship

0
9

Authors

Journals

citations
Cited by 17 publications
(9 citation statements)
references
References 15 publications
0
8
0
1
Order By: Relevance
“…Olabanjo et al [29] created an ensemble ML model incorporating an SVM and KNN. To predict continents susceptible to terrorism from GTD, two feature selection techniques, Chi-squared, Information Gain, and a hybrid of both, were applied to the dataset.…”
Section: A Machine Learning Approach For Enhancing Defense Against Gl...mentioning
confidence: 99%
See 1 more Smart Citation
“…Olabanjo et al [29] created an ensemble ML model incorporating an SVM and KNN. To predict continents susceptible to terrorism from GTD, two feature selection techniques, Chi-squared, Information Gain, and a hybrid of both, were applied to the dataset.…”
Section: A Machine Learning Approach For Enhancing Defense Against Gl...mentioning
confidence: 99%
“…The difficulties related to training ML models due to high dimensional data. [29] Ensemble ML model which combines SVM and KNN…”
Section: Gtdmentioning
confidence: 99%
“…Por otra parte, los métodos de ensamble se han aplicado a temas como la predicción de ataques terroristas tal como en Olabanjo et al (2021) se propone un método de ensamble para la predicción de zonas de peligro en lucha contra el terrorismo global. El objetivo de este trabajo fue desarrollar un modelo de aprendizaje automático que combinó Support Vector Machine y K Nearest Neighbours para la predicción de continentes susceptibles al terrorismo.…”
Section: Trabajos Relacionadosunclassified
“…Data features that are ambiguous, such as columns with similar features, will be collided or selected so that only one column will remain [21]. Empty-valued features will also be deleted in preprocessing.…”
Section: Preprocessing Datasetmentioning
confidence: 99%