As the burden of respiratory diseases continues to fall on society worldwide, this paper proposes a high-quality and reliable dataset of human sounds for studying respiratory illnesses, including pneumonia and COVID-19. It consists of coughing, mouth breathing, and nose breathing sounds together with metadata on related clinical characteristics. We also develop a proof-of-concept system for establishing baselines and benchmarking against multiple datasets, such as Coswara and COUGHVID. Our comprehensive experimentsshow that the Sound-Dr dataset has richer features, better performance, and is more robust to dataset shifts in various machine learning tasks. It is promising for a wide range of real-time applications on mobile devices. The proposed dataset and system will serve as practical tools to support healthcare professionals in diagnosing respiratory disorders. The dataset and code are publicly available here: https://github.com/ReML-AI/Sound-Dr/.