The credit scoring models are aimed to assess the capability of refunding a loan by assessing user reliability in several financial contexts, representing a crucial instrument for a large number of financial operators such as banks. Literature solutions offer many approaches designed to evaluate users' reliability on the basis of information about them, but they share some wellknown problems that reduce their performance, such as data imbalance and heterogeneity. In order to face these problems, this paper introduces an ensemble stochastic criterion that operates in a discretized feature space, extended with some metafeatures in order to perform efficient credit scoring. Such an approach uses several classification algorithms in such a way that the final classification is obtained by a stochastic criterion applied to a new feature space, obtained by a twofold preprocessing technique. We validated the proposed approach by using real-world datasets with different data imbalance configurations, and the obtained results show that it outperforms some state-of-the-art solutions.