On planets with little erosion, thrust faults produce broad, asymmetric, positive-relief, linear to arcuate ridges -often referred to as lobate scarps- that remain largely unaltered, such that their topographic expressions are a measure of the structural uplift caused by the displacement and associated country-rock deformation of the faults. Here we map and systematically assess the structural relief of 24 thrust faults across Mars to infer their growth behavior. Our mapping indicates that the majority of individual thrust faults have simple, linear map traces with lengths of up to ~450 km, but that some thrust faults form systems of up to 1400 km in length. For the most topographically pronounced landforms, the structural relief developed above the fault is as great as ~3400 m. We then relate topographic measurements to the displacement on the underlying fault planes to study the displacement variations along the fault length. We find a variety of displacement distribution shapes of the fault systems, which we attribute to differences in fault growth that include unrestricted and restricted growth, linkage, and/or fault interaction. Finally, we relate the maximum displacements ( ) determined for each of the faults to their respective fault length (L) to establish a maximum displacement-to-length relationship. The observed scaling characteristics and order-of-magnitude scatter of our data are not uncommon for fault populations on Earth and tie in well with the map patterns, tectonic geomorphology, and systematic along-strike displacement distributions to have grown in a basement-block faulting style found in intra-plate tectonic settings on Earth.