Background: Phytate, a potent inhibitor of calcium, iron, and zinc absorption, may hamper the bioavailability of these micronutrients at the time of pregnancy. This study assessed dietary phytate intake and its inhibitory effect on the bioavailability of calcium, iron, and zinc from the diets of pregnant women in rural Bangladesh. The study also explored significant determinants that predicted the absorption of these minerals from the diet. Methods: A multiple pass recall (MPR) approach was used for this study, with in-depth probing interview covering 24-h dietary recall conducted among 717 pregnant women who were in either their second or third trimester. Results: The mean daily phytate, calcium, iron and zinc intake of the pregnant women were found to be 695.1, 192.2, 5.1, and 5.7 mg respectively. The mean molar ratios of phytate to calcium, iron, zinc and (phytate x calcium)/zinc were 0.27, 12.8, 11.2, and 54.8 respectively. All the molar ratios were found to be significantly higher in a group with the highest phytate intake compared to other intake groups. Phytate inhibited iron absorption from the diet of all the pregnant women sampled, and inhibited calcium absorption among 52 % of the women while inhibition of zinc absorption was not found in a notable number (12 %) of the pregnant women. When using multivariate models, phytate intake, inadequate micronutrient intake, gestational age, and energy intake significantly predicted the variance in phytate to mineral molar ratios. The predicting models calculated about 92 %, 88 %, and 89 % variance in phytate to calcium, iron, and zinc molar ratios respectively. Phytate to calcium, iron, and zinc molar ratios would be expected to be respectively 0.05, 2.48, and 1.96 points higher for every 100 mg increment in daily phytate intake. Conclusions: Phytate intake was found to inhibit the bioavailability of iron and calcium from the diets of pregnant women. Moreover, phytate was one of the strongest inhibitory predictors of calcium, iron and zinc bioavailability.