2005
DOI: 10.1111/j.1366-9516.2006.00225.x
|View full text |Cite
|
Sign up to set email alerts
|

An evaluation of a GARP model as an approach to predicting the spatial distribution of non‐vagile invertebrate species

Abstract: One of the primary goals of any systematic, taxonomic or biodiversity study is the characterization of species distributions. While museum collection data are important for ascertaining distributional ranges, they are often biased or incomplete. The Genetic Algorithm for Rule-set Prediction (GARP) is an ecological niche modelling method based on a genetic algorithm that has been argued to provide an accurate assessment of the spatial distribution of organisms that have dispersal capabilities. The primary objec… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2

Citation Types

1
69
1
2

Year Published

2007
2007
2021
2021

Publication Types

Select...
9

Relationship

0
9

Authors

Journals

citations
Cited by 77 publications
(73 citation statements)
references
References 42 publications
1
69
1
2
Order By: Relevance
“…These conflicting results are in accordance to the recent discussions in the literature about the relative power and predictive ability of GARP (McNyset, 2005;McNyset and Blackburn, 2006;Stockman et al, 2006;White and Kerr, 2006;Fitzpatrick et al, 2007;Tsoar et al, 2007). Also, as recently pointed out by Peterson et al (2008), the tests by Elith et al (2006) were actually performed using high-quality data and designed to evaluate ENMs in a situation of fine-scale modeling of species distribution details.…”
Section: Discussionsupporting
confidence: 62%
“…These conflicting results are in accordance to the recent discussions in the literature about the relative power and predictive ability of GARP (McNyset, 2005;McNyset and Blackburn, 2006;Stockman et al, 2006;White and Kerr, 2006;Fitzpatrick et al, 2007;Tsoar et al, 2007). Also, as recently pointed out by Peterson et al (2008), the tests by Elith et al (2006) were actually performed using high-quality data and designed to evaluate ENMs in a situation of fine-scale modeling of species distribution details.…”
Section: Discussionsupporting
confidence: 62%
“…Para la realización de este tipo de modelos suele utilizarse información biológica procedente de grupos y regiones no tan insuficientemente prospectados como en nuestro caso, pero es indudable que los resultados de estas técnicas, aunque deben siempre considerase con precaución (Jiménez-Valverde et al 2008), adquieren un interés especial cuando son capaces de realizar predicciones bajo las condiciones de carencia de información que generalmente abundan en los grupos y en las regiones mas diversificadas (Soberón & Peterson 2004, Whittaker et al 2005, Cayuela et al 2009). El procedimiento metodológico seguido en este trabajo permite corregir la frecuente sobrepredicción de este tipo de modelizaciones (Fielding & Haworth 1995, Araújo & Williams 2000, Stockwell & Peterson 2002, Brotons et al 2004, Segurado & Araújo 2004, Stockman et al 2006, especialmente cuando los valores de riqueza se obtienen a través del sumatorio de mapas estimados individuales (Hortal & Lobo 2006), y también validar las predicciones de riqueza obtenidas utilizando los resultados de diversos estimadores no-paramétricos. Pese a ello, puede decirse que la aproximación seguida en éste y en otros trabajos (Trotta-Moreu et al 2008, Verdú & Lobo 2008, Pineda & Lobo 2009, Trotta-Moreu & Lobo 2010) es atrevida y de dudosa eficiencia ya que, como nosotros mismos estimamos, proporciona un error de comisión promedio del 94% y un error de omisión medio del 28% (71% y 18%, respectivamente, en Geotrupidae; Trotta-Moreu & Lobo 2010).…”
Section: Discussionunclassified
“…There are many environmental niche modeling packages available; for example, MaxEnt (Phillips et al 2006), and GARP (Stockwell andPeters 1999). Existing comparisons between different niche models do not show consistent conclusions (Lek et al 1996, Mastrorillo et al 1997, Stockwell and Peterson 2002, Elith et al 2006, Graham et al 2006, Stockman et al 2006 in part due to the fact that the comparisons were primarily conducted on different platforms, which could implement the training and testing differently. Therefore, there is a need to develop an integrated platform to model species distribution data.…”
mentioning
confidence: 99%