A great deal of evidence has confirmed that electromagnetic fields (EMFs) can affect the central nervous system. In this study, cultured neonatal human retinal pigment epithelial (hRPE) cells were exposed to pulsed EMF of 1 mT intensity and 50 Hz frequency 8 h daily for 3 days. In addition to cell proliferation and cell death assays, immunocytochemistry for RPE65, PAX6, nestin, and cytokeratin 8/18 proteins were performed. Real-time reverse transcriptase polymerase chain reaction (RT-PCR) was performed for NES, PAX6, RPE65, and ACTA2 gene expression. Exposed hRPE cells did not demonstrate significant change in terms of cytomorphology, cell proliferation, or cell death. Protein expression of PAX6 was decreased in treated cells compared to controls and remained unchanged for RPE65, cytokeratin 8/18, and nestin. Gene expressions of NES, RPE65, and PAX6 were decreased in treated cells as compared to controls. Gene expression of ACTA2 did not significantly change. In conclusion, viability of cultivated neonatal hRPE cells did not change after short exposure to a safe dose of pulsed EMF albeit that both gene and protein expressions of retinal progenitor cell markers were reduced. Whether longer exposure durations that are being constantly produced by widely-used electronic devices may induce significant changes in these cells, needs further investigation. Bioelectromagnetics. 39:585-594, 2018.