Chlorofluorocarbons including 1,1,2-trichloro-1,2,2-trifluoroethane (CFC-113) often occur in groundwater plumes comingled with chlorinated solvents such as trichloroethene (TCE). We show that CFC-113 inhibits reductive dechlorination by Dehalococcoides mccartyi (Dhc) in a concentration-dependent manner, causing cis-1,2-dichloroethene (cis-DCE) stalls. Following a 17-day exposure of Dhc-containing consortium SDC-9 to 76 μM CFC-113, cis-DCE dechlorination activity did not recover after CFC-113 removal. River sediment microcosms demonstrated that CFC-113 was subject to microbial degradation under anoxic conditions, and chlorotrifluoroethene (CTFE) was observed as a transformation product. No degradation of CFC-113 was observed in killed controls and in incubations with reactive minerals including mackinawite, green rust, magnetite, and manganese dioxide. In vitro experiments with reduced corrinoid (i.e., vitamin B 12 ) mediated reductive dechlorination of CFC-113 to CTFE and trifluoroethene (TFE) followed by reductive defluorination of TFE to cis-1,2-difluoroethene (cis-DFE) as an end product. This biomimetic degradation of CFC-113 to cis-DFE was also demonstrated in vivo using the corrinoid-producing homoacetogen Sporomusa ovata, suggesting the cometabolic microbial reductive dechlorination and reductive defluorination of CFC-113 to cis-DFE is feasible under anoxic in situ conditions. The CFC-113 degradation intermediates CTFE, TFE, and cis-DFE did not inhibit TCE dechlorination by Dhc, indicating that the initial reductive transformation step can overcome cis-DCE stalls.