2021
DOI: 10.1177/0161734621998091
|View full text |Cite
|
Sign up to set email alerts
|

An Evaluation of the Effectiveness of Image-based Texture Features Extracted from Static B-mode Ultrasound Images in Distinguishing between Benign and Malignant Ovarian Masses

Abstract: Significant successes in machine learning approaches to image analysis for various applications have energized strong interest in automated diagnostic support systems for medical images. The evolving in-depth understanding of the way carcinogenesis changes the texture of cellular networks of a mass/tumor has been informing such diagnostics systems with use of more suitable image texture features and their extraction methods. Several texture features have been recently applied in discriminating malignant and be… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

1
13
0
1

Year Published

2021
2021
2024
2024

Publication Types

Select...
6

Relationship

0
6

Authors

Journals

citations
Cited by 16 publications
(15 citation statements)
references
References 48 publications
1
13
0
1
Order By: Relevance
“… 20 49.5 Acharya et al, 50 2012 a NR NR 20 49.5 Umar et al, 51 2012 NR NR 24 NR Acharya et al, 52 2012 a NR Patients with no anatomopathological evaluation. 20 49.5 Al-Karawi et al, 53 2021 a All ovarian tumors were given a histological diagnosis label. NR 232 NR Jian et al, 54 2021 Histologically proven EOC; MRI performed within 1 month prior to gynecological operation; all four axial MRI sequences obtained: fast spin-echo T2-weighted imaging with fat saturation(T2WI FS), echo-planar DWI with gradient b factors of 0 and 600, 800, or 1000 s/mm 2 , ADC map, and 2D volumetric interpolated breath hold examination (VIBE) contrast enhanced T1-weighted imaging with FS (CE-T1WI) in the late phase (150–190 s after the intravenous administration of contrast agent); absence of prior gynecological operation or chemotherapy prior to MRI scanning.…”
Section: Resultsmentioning
confidence: 99%
See 1 more Smart Citation
“… 20 49.5 Acharya et al, 50 2012 a NR NR 20 49.5 Umar et al, 51 2012 NR NR 24 NR Acharya et al, 52 2012 a NR Patients with no anatomopathological evaluation. 20 49.5 Al-Karawi et al, 53 2021 a All ovarian tumors were given a histological diagnosis label. NR 232 NR Jian et al, 54 2021 Histologically proven EOC; MRI performed within 1 month prior to gynecological operation; all four axial MRI sequences obtained: fast spin-echo T2-weighted imaging with fat saturation(T2WI FS), echo-planar DWI with gradient b factors of 0 and 600, 800, or 1000 s/mm 2 , ADC map, and 2D volumetric interpolated breath hold examination (VIBE) contrast enhanced T1-weighted imaging with FS (CE-T1WI) in the late phase (150–190 s after the intravenous administration of contrast agent); absence of prior gynecological operation or chemotherapy prior to MRI scanning.…”
Section: Resultsmentioning
confidence: 99%
“… NR NR No Acharya et al, 52 2012 a Retrospective study, NR. 1800/200 NR No Al-Karawi et al, 53 2021 a Retrospective study, data from the IOTA research. 150/148 74/76 2005.11–2013.11 No Jian et al, 54 2021 Retrospective study, eight centers.…”
Section: Resultsmentioning
confidence: 99%
“…Radiomics techniques varied greatly between studies. Al-karawi et al investigated common computer vision feature sets to classify ovarian tumors as benign or malignant, but examined only a small subset of typical radiomic feature sets [38]. They found Gabor filters to be the best performing individual feature set.…”
Section: Ai and Imagingmentioning
confidence: 99%
“…In a recently published study, Al-Karawi et al used ML algorithms (support vector machine classification) to investigate seven differing familiar image texture parameters in ultrasound still images, which, according to the authors, can provide information about altered cellular composition in the process of carcinogenesis. By combining the features with the best test results, the researchers achieved an accuracy of 86 – 90% 39 .…”
Section: Ai and Benefits For Gynaecological-obstetric Imaging And Diagnosticsmentioning
confidence: 99%
“…Al-Karawi et al untersuchten im Rahmen einer aktuellen Arbeit mittels ML-Algorithmen (Support Vector Machine Classifier) 7 unterschiedliche bekannte Bildtexturparameter in US-Standbildern, die nach Vorstellung der Autoren Auskunft über die veränderte zelluläre Zusammensetzung i. R. d. Karzinogenese geben können. Durch Kombination der Merkmale mit den besten Testergebnissen war eine Genauigkeit von 86 – 90% beschrieben worden 39 .…”
Section: Ki Und Vorteile Für Gynäkologisch-geburtshilfliche Bildgebung Und Diagnostikunclassified