1983
DOI: 10.1016/0304-8853(83)90681-9
|View full text |Cite
|
Sign up to set email alerts
|

An evaluation of the magneto-optical characteristics of YIG single crystals

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0
1

Year Published

1983
1983
2022
2022

Publication Types

Select...
6

Relationship

0
6

Authors

Journals

citations
Cited by 8 publications
(2 citation statements)
references
References 4 publications
0
1
0
1
Order By: Relevance
“…The hysteresis loss increases up to a maximum at 1350 • C, thereafter declining, while the coercive force decreases to a minimum at 1400 • C, followed by an increase at 1450 • C. Hence, 1400 • C appeared to be the best sintering temperature. Sintering above 1400 • C is affected by the trend of rare-earth iron garnet systems to decompose into orthoferrites and liquid phase, depending on the effective partial pressure of oxygen [31,32]. It may occur at lower temperatures when the partial pressure of oxygen in the sintering atmosphere is very low.…”
Section: Resultsmentioning
confidence: 99%
“…The hysteresis loss increases up to a maximum at 1350 • C, thereafter declining, while the coercive force decreases to a minimum at 1400 • C, followed by an increase at 1450 • C. Hence, 1400 • C appeared to be the best sintering temperature. Sintering above 1400 • C is affected by the trend of rare-earth iron garnet systems to decompose into orthoferrites and liquid phase, depending on the effective partial pressure of oxygen [31,32]. It may occur at lower temperatures when the partial pressure of oxygen in the sintering atmosphere is very low.…”
Section: Resultsmentioning
confidence: 99%
“…Key words: yttrium iron garnet; magneto-optical ceramics; Bi-doped; infrared transmittance; Faraday rotation 法拉第效应是磁光材料重要磁光特性之一, 表 现为当磁场作用于磁光材料时, 线性偏振光以平行 于磁场方向通过磁光材料后, 偏振平面发生旋转, 旋转方向仅与磁场方向有关, 与光的传播方向无关, 旋转角度大小与材料厚度及磁场强度有关。磁光材 料应用其法拉第效应可制备光隔离器 [1] 、相位调制 器 [2] 、偏振控制器 [3] 和数据存储器 [4] 等器件。YIG 材 料 [5] 在饱和外磁场下法拉第旋转角大, 且红外透过 率高、光吸收率低, 是制作法拉第旋转器(Faraday Rotator, FR)、红外光隔离器(Isolator)等器件的重要 核心材料。目前已应用的主要为 YIG 单晶材料, 通 常采用助熔剂法 [6] 、流动溶剂浮区(Traveling Solvent Floating Zone, TSFZ)法 [7] 、光学浮区法 [8] 等方法制备, 例如上海应用技术大学徐家跃等 [9] 以 PbO-B 2 O 3 为 助熔剂成功生长出高透过率 YIG 单晶。中国科学院 上海硅酸盐研究所武安华等 [10] 采用光学浮区法成 功制备了具有优异磁光性能的 Ce 掺杂的 YIG 晶体。 YIG 非一致熔融性的特点, 单晶制备难以获得大体 积块材, 限制了其应用。2018 年日本 Ikesue 等 [11] 首次通过氧气氛无压和 O 2 -Ar 气氛热等静压两步烧 结法获得磁光性能优良的高透过率 YIG 磁光陶瓷, 该报道预示采用陶瓷工艺有望获得组成精确可控、 磁光性能优异、红外透过率高的大尺寸 YIG 材料。 优质的磁光材料需要以尽可能小的尺寸去获得 更大的法拉第旋转角, 即提高磁光材料的旋光率 (θ F )。立方 YIG 晶格属于空间群 Ia3d [12] , 由三个磁 性亚晶格组成, 分别为八面体位(a)、四面体位(d)和 十二面体位(c)亚晶格 [13] , 其中十二面体(c)亚晶格 被非磁性离子 Y 3+ 离子占据。前期已有研究通过离 子半径适配的异质离子取代 Y 3+ , 以增强 YIG 的磁 光性能, 如三价稀土离子 [14][15][16][17] 或 Bi 3+ 离子 [18][19] 等。 在 YIG 材料中, 当 Bi 3+ 离子部分取代 Y 3+ 离子时, 其 法拉第旋转角出现反向旋转, 随 Bi 3+ 掺杂量增加近 似线性变化 [20] 。文献 [21] [22][23] , 只 能 在 GGG (Gd 3 Ga 5 O 12 )基衬底材料上外延生长, 生长速 度慢、生产周期长、成本非常高。Ikesue [11] 在氧气 氛围下热等静压(Hot Isostatic Pressing, HIP)烧结红 于 Y 3+ 的半径(0.1019 nm) [25] , 大半径 Bi 3+ 离子通过…”
unclassified