2021
DOI: 10.1016/j.fss.2020.04.012
|View full text |Cite
|
Sign up to set email alerts
|

An exact handling of the gradient for overcoming persistent problems in nonlinear observer design via convex optimization techniques

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

0
18
0
4

Year Published

2021
2021
2024
2024

Publication Types

Select...
6

Relationship

2
4

Authors

Journals

citations
Cited by 24 publications
(22 citation statements)
references
References 35 publications
0
18
0
4
Order By: Relevance
“…En (Quintana et al, 2020), se demuestra que (4) siempre se puede obtener por medio de operaciones algebraicas. Por ejemplo, asuma que se tiene una diferencia de polinomios…”
Section: Planteamiento Del Problemaunclassified
See 1 more Smart Citation
“…En (Quintana et al, 2020), se demuestra que (4) siempre se puede obtener por medio de operaciones algebraicas. Por ejemplo, asuma que se tiene una diferencia de polinomios…”
Section: Planteamiento Del Problemaunclassified
“…Trabajos recientes abordan este problema empleando el teorema diferencial de valor medio (DMVT por sus siglas en ingles) (Ichalal et al, 2010), enfoques robustos mediante H ∞ para mitigar la influencia de los parámetros desconocidos (Guerra et al, 2018), restricciones de tipo Lipschitz (Rajamani, 1998;Bergsten and Driankov, 2002); más recientemente en (Ichalal et al, 2018) se propone una transformación, mientras que en (Chadli and Karimi, 2012) se emplean argumentos de robustez propios de sistemas inciertos. En este trabajo, las ideas de (Quintana et al, 2020) son utilizadas para resolver este problema mediante manipulaciones algebraicas para factorizar la señal de error al lado izquierdo de la ecuación en diferencias.…”
Section: Introductionunclassified
“…The exact discrete‐time model (5) can thus be interpreted as an Euler approximate model subject to the cumulative error between the map evaluated at the continuous‐time trajectory x ( s ) and the last sampled state x k . Based on purely algebraic rearrangements, a methodology has been provided in References 39,40 to find a (possibly nonunique) matrix (v(x(s),xk),θ), where v(x(s),xk)=false[v1(x(s),xk),,vnv(x(s),xk)false], nv, such that F(x(s),θ,uk)F(xk,θ,uk)=(v(x(s),x(tk)),θ)(x(s)xk), which allows to write (5) as xk+1=Fτa(xk,θ,uk)+…”
Section: Problem Formulationmentioning
confidence: 99%
“…• A key result allowing the exact discretization to be written as an Euler approximate model with less conservative norm-bounded uncertainties, which profits of a recently appeared exact factorization based on algebraic rearrangements. 39,40 • A sufficient LMI-based condition to design the robust controller with gain-scheduled gains such that the origin of the exact discretization is locally asymptotically stable. A convex optimization problem is formulated to provide the maximum guaranteed domain of attraction estimation for the origin of the closed-loop exact discretization system.…”
Section: Introductionmentioning
confidence: 99%
See 1 more Smart Citation