In this paper, inflationary spectral index from Langevin equation is calculated under the frame of warm inflationary scenario with inflaton interacting with U(1) gauge fields through the Chern-Simons coupling $\propto\phi F_{\mu\nu}\tilde{F}^{\mu\nu}/f$. Under the strong dissipative condition, the spectral index is calculated in terms of the ratio of Hubble parameter to temperature H/T. Then relation between H/T and other cosmic parameters is analytically expressed, based on which a spectral index relating the Chern-Simons coupling strength is further obtained. Numerical results show that cosmic temperature T closes to a constant during inflation and decreases after inflation without a reheating process. Meanwhile, the ratio H/T tends to a constant if the gauged coupling constant is less than a threshold. This phenomenon shows that cosmic temperature may be an important physical parameter with a special value and adiabatic approximation still holds. It is estimated H/T ≤ 0.3377 during inflation from Planck data and other constraint conditions.