Abstract. During the Pliocene, atmospheric CO2 concentrations (pCO2) were similar to today’s and global average temperature was ~3 °C higher. However, the relationships and phasing between variability in climate and pCO2 on orbital time scales are not well understood. Specifically, questions remain about the nature of a lag of pCO2 relative to benthic foraminiferal δ18O in the late-Pliocene Marine Isotope Stage M2 (3300 kiloannum ago, ka), which was longer than during the Pleistocene. Here, we present a multi-proxy paleoceanographic reconstruction of the late-Pliocene subantarctic zone, which is today one of the major ocean sinks of atmospheric CO2. New dinoflagellate cyst assemblage data is combined with previously published sea surface temperature reconstructions, to reveal past surface conditions, including latitudinal migrations of the subtropical front (STF) over the late-Pliocene at ODP Site 1168, offshore west Tasmania. We observe strong oceanographic variability at the STF over glacial-interglacial timescales, especially across the M2 (3320–3260 ka). By providing tight and independent age constraints from benthic foraminiferal δ18O, we find that, much more than benthic δ18O or local SST, latitudinal migrations of the STF are tightly coupled to pCO2 variations across the M2. Specifically, a northerly position of the STF during M2 deglaciation coincides with generally low pCO2. We postulate that the efficiency of the Southern Ocean carbon outgassing varied strongly with migrations of the STF, and that is in part accounted for the variability in pCO2 across M2.