13C nuclear magnetic resonance chemical shifts and nJ(13C,13C) are reported for anisole and 16 of its derivatives, all enriched with 13C in the methoxyl group. 5J(13C,13C) is directly proportional to sin2θ, where θ is the angle by which the methoxy group twists about the C(1)—O bond. In acetone-d6 solution, 5J(C,C) is not observable for a number of 4-substituted anisoles, except for 1,4-dimethoxybenzene. For the latter, 5J(C,C) is compatible with a twofold barrier of 19.3 ± 1.1 kJ/mol hindering rotation about the C(1)—O bond. However, it is unlikely that the barrier is purely twofold in nature. The observed 5J(C,C) is also compatible with 10.5 and 6.0 kJ/mol for the twofold and fourfold components, respectively, implying a dynamical nuclear magnetic resonance barrier of less than 13 kJ/mol. While phase and solvent effects on the internal barrier in anisole are certainly substantial, it appears that a fourfold component must also be present. The apparent twofold barrier in 2,6-difluoroanisole is 5.4 ± 0.9 kJ/mol, based on 5J(C,C) and 6J(H-4,13C). The latter coupling constant is also reported for 1,2,3-trimethoxybenzene and used to deduce its conformation. The θ dependence of 3J(C,C) and 4J(C,C) is briefly discussed for symmetrical anisole derivatives. Differential 13C, 13C isotope shifts are reported for 1,4-dimethoxybenzene.