Cellulose is a good bio-based material for rich resources and recyclability. Paraffin is widely used in the field of energy storage and temperature regulation due to its excellent heat storage properties and mature preparation technology. In this paper, the cellulose fibers with energy storage and temperature regulation were prepared by wet spinning process using paraffin as phase change material. Field Emission Scanning Electron Microscope (FE-SEM), X-Ray Diffraction (XRD), Differential Scanning Calorimetry (DSC) and Thermal Gravimetric Analysis (TGA) were utilized to characterize the morphology structure, crystalline properties, phase transition properties and heat resistance of fibers and so on. The results showed that the fiber surface without holes and paraffin was uniformly distributed in the cellulose matrix, and paraffin was not easily overflow during the process of phase change. Paraffin and cellulose substrate had good compatibility due to the interaction of hydrogen bonding, and 30% of paraffin did not cause a significant impact on the degree of crystallinity and thermal stability of cellulose fibers. Enthalpy of the resultant functional fibers could reach 27.44 J/g, and the thermal decomposition temperature was over 300 °C. The fibers possessed the phase change ability and certain mechanical properties. Furthermore, it was found that the fibers still had good resistance to washing under extreme conditions.