“…Testing biaxially-loaded cruciform specimens represent a more direct approach for obtaining true biaxial stress states, and consequently this method has gained wide acceptance [7], [8], [10], [11], [15]. As suggested by many researchers in the field [7], [10], [13], an ideal cruciform specimen should accomplish the following features: i) It should be capable of generating a sufficiently wide and homogenous biaxial stress/strain field in the gauge area, ii) failure must occur in the predefined gauge zone, iii) the cruciform should accept arbitrary biaxial load ratios for generating a complete failure envelope (within a desired range), iv) both the tested and the reinforcement layers should be of the same material, v) the transition between the gauge zone and the reinforced regions should be gradual enough as to avoid undesirable high stress concentrations, vi) the cruciform fillet radius should be as small as possible in order to reduce stress coupling effects, and vii) stress measurements in the test area should be comparable to nominal values obtained by dividing each applied load by its corresponding cross-sectional area.…”