The issue of aircraft icing poses a substantial threat to flight safety. In order to investigate more efficient anti-icing and de-icing technologies, a comparative analysis was conducted on the de-icing characteristics of three types of actuator materials under varying conditions. Initially, experimental research was undertaken to analyze the temperature traits of three actuators under ice-free conditions. Three power densities were chosen for the experiment: 0.170 W/cm2, 0.727 W/cm2, and 1.427 W/cm2. The research findings revealed distinct characteristics: plasma actuators and resistance wire actuators exhibited a strip-like high-temperature region during operation, with well-defined boundaries between the high-temperature and low-temperature zones, whereas ceramic-based semiconductor actuators showcased a uniform high-temperature region. As energy consumption rose, the thermal equilibrium temperatures of all three types tended to converge, with resistance wire actuators operating at 1.427 W/cm2, showing the highest temperature rise rate at that power density. Subsequently, experimental research was carried out on the de-icing performance of three actuators under icing conditions at a specific power density. Following 120 s of de-icing, the ice layer covering the surface of the plasma actuator completely melted, forming a cavity. Conversely, the ice layer on the ceramic-based semiconductor actuator remained partially intact in a strip shape. Ice deposits were still visible on the surface of the resistance wire actuator. This observation highlights the remarkable de-icing speed of the plasma actuator. The propulsive force of plasma generated on the fluid inside the ice layer enhances heat transfer efficiency, thereby accelerating the de-icing process of the plasma actuator at the same power density. The analysis of the de-icing performance of these three novel types of actuators establishes a robust groundwork for exploring more effective aircraft de-icing methods. Furthermore, it furnishes theoretical underpinning for the advancement of composite anti-icing and de-icing strategies.