In post-necking tension of cylindrical specimen, the stress corrections based on the current analytical models have relatively significant errors at large strains. In this study, the prediction capability of these models involving Bridgman model, Siebel model and Chen model is evaluated by performing a series of finite element simulations of uniaxial tension of cylindrical specimen with different hardening exponents varied from 0.05 to 0.3. Numerical analysis of stress and strain distributions on the necking cross section indicates that the considerable errors of the corrected stresses corresponding to large strains might be mainly attributed to the assumption of uniform strain distribution on the necking cross section in these analytical models. The modification strategies of these models are presented in order to improve their prediction accuracy of post-necking stresses, taking geometrical configuration of neck and material properties into consideration. Accordingly, the modification formulas are proposed based on simulation results, involving the radius of cross section of neck and the hardening exponent. Finally, these formulas are used to correct the stresses in the post-necking tension of Q345 cylindrical specimen, which are compared with the stresses identified through inverse method. The results indicate that the modified models significantly improve the prediction accuracy of post-necking stresses at large strains.