Two-component composite hydraulic structures are commonly employed in irrigation systems. The first component, responsible for managing the overflow, is represented by a weir consisting of two rectangles. The second component, responsible for regulating the underflow, is represented by a semicircular gate. Both components are essential for measuring, directing, and controlling the flow. In this study, we experimentally investigated the flow through a combined two-rectangle sharp-crested weir with a semicircular gate placed across the channel as a control structure. The upper rectangle of the weir has a width of 20 cm, while the lower rectangle has varying widths (W2) of 5, 7, and 9 cm and depths (z) of 6, 9, and 11 cm. Additionally, three different values were considered for the gate diameter (d), namely 8, 12, and 15 cm. These dimensions were tested interchangeably, including a weir without a gate (d = 0), under different water head conditions. The results indicate that the discharge passing through the combined structure of the two rectangles and the gate is significantly affected by the weir and gate dimensions. After analyzing the data, empirical formulas were developed to predict the discharge coefficient (Cd) of the combined structure. It is important to note that the analysis and results presented in this study are limited to the range of data that were tested.