Using computational analysis, convective heat transfer enhancement and entropy generation of laminar flows through wavy channels was examined. A three-dimensional geometry was used for simulation. The simulation was performed using non dimensional governing equations for a steady laminar flow. The flow is both thermally and hydrodynamically developing while the channel walls are kept at a constant temperature. The computations were conducted with Reynolds number ranging from 100 to 2000 using water (Pr = 7.0) as the working fluid. The numerical simulation was carried out by using two different diameter ratio (W = L/D) and three different wave ratio (Y = P/D) to reach the optimal geometry with the maximum performance evaluation criterion. The results showed that the heat transfer performance in wavy channel was enhanced than a typical circular channel. The pressure drop also increased in case of wavy channel and smaller wave ratio has more friction penalty. Generally, the heat transfer performance of wavy channel has an enhanced heat transfer performance because of the thermal boundary layer disturbance and block of longitudinal heat transfer.