The temperature of the flow entering a high-pressure turbine stage is inherently non-uniform, as it is produced by several discrete, azimuthally-distributed combustors. In general, however, industrial simulations assume inlet temperature uniformity to simplify the preparation process and reduce computation time In the VI configuration, the hot streaks produced higher time-averaged heat load on the vanes and lower heat load on the blades. As the hot streaks in the VI case passed over the stator vanes, they also spread spanwise due to the actions of the casing passage vortices and the radial pressure gradient; this resulted in a stream entering the rotor with relatively low temperature variations. The hot streaks in the MP case were convected undisturbed past the relatively cool vane section. Relatively high time-averaged enthalpy values were found to occur on the pressure side of the blades in the MP configuration. The non-uniformity of the time-averaged enthalpy on the blade surfaces was lower in the VI configuration. The flow exiting the rotor section was much less non-uniform in the VI case, but differences in calculated efficiency were not significant. i for Claudine and Henri ii