The current experimental study performed the overall performance of the microchannel heat sink using the heat transfer coefficient, Nusselt number, and pressure drop for three novel manifold configurations. These selected manifolds have a rectangular (R), rectangle with semicircular (RSC) and divergent-convergent (DC) shapes for inlet and outlet. The heat transfer coefficient for all three types of microchannel was reported for the Reynolds number range of 342-857. The experiments were tested at four different heat inputs ranges between 50-125 W. R-type microchannel heat sink showed the worst performance, while the performance of DC-type microchannel heat sinks was the best. At Re of 342, the lowest Nusselt number was observed to be 2.8 at lower Reynolds number 342 for R-type manifold. RSC manifolds MCHS seems to be a better choice compared to R-type and DC-type MCHS with respect to pressure drop and Nusselt number. Compared to R-type microchannel heat sink, 24-32% and 7-10% augmentation in heat transfer coefficients were reported for DC-type and RSC-type microchannel heat sinks, respectively. Based on the released experimental results, it can be stated that DC-type microchannel heat sink is more beneficial in terms of heat transfer enhancement.