In the mining process of the II1 coal seam at Zhaogu No. 2 coal mine, a method of stratified mining is employed, leaving relatively wide coal pillars in sections. To enhance the resource recovery rate, the mine carries out the cooperative mining of the sectional coal pillars and the lower layer coal seam. The 14,022 cooperative working face of fully-mechanized and fully-mechanized top-coal caving at Zhaogu No. 2 coal mine is taken as the research object. Through numerical simulation, theoretical calculations, and on-site industrial trials, a comprehensive analysis of the overburden structural characteristics and the support adaptability at the working face is conducted. It is clarified that a stress arch bearing structure can be formed above the sectional coal pillars during cooperative mining, and this structure is controlled by key strata. The formation of a stress arch bearing structure in the overburden above the sectional coal pillars provides protection for the underlying mining area. A formula for calculating the working resistance of hydraulic supports under the stress arch in sectional coal pillar is derived. Based on these results, the working resistance of hydraulic supports in the coal pillar area is calculated and selected. Field application shows that the working resistance of the support is 10,000 kN in the fully-mechanized top-coal caving working face, and is 9000 kN in fully-mechanized working face, meeting the support requirements and ensuring safe mining at the working face. This study provides a valuable engineering reference for achieving cooperative mining of abandoned sectional coal pillars and lower layer coal seam in stratified mining method.