Crude oil and refinery products are transported worldwide to meet human energy needs. During transportation via pipeline, huge pumping power is required to overcome the frictional pressure drop and the associated drag along the pipeline. The reduction of both is of great interest to industry and academia. Highly expensive ultrahigh molecular weight (UHMW, MW a million Dalton) drag reducing polymers (DRPs) are currently used to address this problem. The present paper, therefore, emphasizes particularly the development of a high-performance catalyst system that synthesizes DRPs (using higher alpha-olefins)—a highly promising cost reduction alternative. This homogeneous catalyst system features a new concept that uses a cost-effective titanium-based Ziegler–Natta precatalyst and a cocatalystLewis base complex having both steric hindrance (around N heteroatom) and electronic effect. This novel work, which involves precatalyst–cocatalyst molecular separation and cocatalystmonophenyl amine association-dissociation phenomena, already generated several US patents. The subject catalyst prepares UHMW DRPs at room temperature, avoiding the use of zero and sub-zero temperatures. The resulting product almost tripled the rate of transportation of a selected grade of refinery product and saved about 50% pumping energy at ppm level pipeline concentration. It is also very easily soluble. Hence, massive modification of existing pipeline will be unnecessary. This will save additional infrastructure cost. This paper also summarizes challenges facing the development of improved heterogeneous catalysts, dispersed polymerization process, molecular simulation-based DRP product formulation, and model/theory of turbulent mixing and dispersion in the transportation pipeline setting.