Self-organizing network (SON) is a well-known term used to describe an autonomous cellular network. SON functionalities aim at improving network operational tasks through the capability to configure, optimize and heal itself. However, as the deployment of independent SON functions increases, the number of dependencies between them also grows. This work proposes a tool for efficient conflict resolution based on network performance predictions. Unlike other state-of-the-art solutions, the proposed self-coordination framework guarantees the right selection of network operation even if conflicting SON functions are running in parallel. This self-coordination is based on the history of network measurements, Corresponding Author: Jessica Moysen (Email: jessica.moysen@tsc.upc.edu) which helps to optimize conflicting objectives with low computational complexity. To do this, machine learning (ML) is used to build a predictive model, and then we solve the SON conflict by optimizing more than one objective function simultaneously. Without loss of generality, we present an analysis of how the proposed scheme provides a solution to deal with the potential conflicts between two of the most important SON functions in the context of mobility, namely mobility load balancing (MLB) and mobility robustness optimization (MRO), which require the updating of the same set of handover parameters. The proposed scheme allows fast performance evaluations when the optimization is running. This is done by shifting the complexity to the creation of a prediction model that uses historical data and that allows to anticipate the network performance. The simulation results demonstrate the ability of the proposed scheme to find a compromise among conflicting actions, and show it is possible to improve the overall system throughput.