The blast furnace (BF) hearth is critical for determining the life of a BF. Irreversibly eroded hearths can be caused by high-temperature molten iron erosion, alkali metal corrosion, and thermal stress. When serious depression erosion occurs in the hearth, furnace protection measures can prevent the erosion from expanding and ensure the safe operation of the BF. At present, furnace protection measures and furnace protection strength are mostly selected based on engineering experience. In this paper, a three-dimensional (3D) computational fluid dynamics (CFD) numerical model of BF hearth with elephant-type depression erosion was established to predict and evaluate the effect of furnace protection measures. At the same time, the phase change behavior of hot iron solidification was also considered. A numerical model was used to analyze common furnace protection measures such as increasing furnace hearth cooling, closing the tuyere, reducing the tapping productivity, and reducing the tapping temperature. The calculation results are consistent with actual furnace protection experience.