Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
With the rise of digital transformation, web security has become a critical concern for organizations, governments, and individuals. This study explores the role of data science in enhancing web security by leveraging machine learning algorithms and advanced analytics to predict and identify potential attacks in real-time. The main objective is to demonstrate how data-driven techniques, including predictive analytics, anomaly detection, and behavioral analysis, can be integrated into existing security frameworks to reduce vulnerabilities and strengthen defenses against cyber threats. The research gap addressed by this study lies in the insufficient application of comprehensive, data-driven methodologies for threat detection and classification in web security. The problem gap is the absence of integrated frameworks that combine feature engineering, classification models, and anomaly detection for both known and unknown threats. This study bridges these gaps by employing a structured dataset of web interactions to model, detect, and predict security threats using advanced data science techniques. Using a dataset of simulated web traffic and previous attack records, this research applies data preprocessing, feature engineering, and machine learning classification models, such as decision trees and random forests, to predict threat levels and identify anomalies. Results show that machine learning models can effectively classify threat levels, with a threat classification accuracy of 80 percent. This study contributes to the field by demonstrating how data science can improve web security practices, offering a proactive approach to detecting and mitigating cyber-attacks.
With the rise of digital transformation, web security has become a critical concern for organizations, governments, and individuals. This study explores the role of data science in enhancing web security by leveraging machine learning algorithms and advanced analytics to predict and identify potential attacks in real-time. The main objective is to demonstrate how data-driven techniques, including predictive analytics, anomaly detection, and behavioral analysis, can be integrated into existing security frameworks to reduce vulnerabilities and strengthen defenses against cyber threats. The research gap addressed by this study lies in the insufficient application of comprehensive, data-driven methodologies for threat detection and classification in web security. The problem gap is the absence of integrated frameworks that combine feature engineering, classification models, and anomaly detection for both known and unknown threats. This study bridges these gaps by employing a structured dataset of web interactions to model, detect, and predict security threats using advanced data science techniques. Using a dataset of simulated web traffic and previous attack records, this research applies data preprocessing, feature engineering, and machine learning classification models, such as decision trees and random forests, to predict threat levels and identify anomalies. Results show that machine learning models can effectively classify threat levels, with a threat classification accuracy of 80 percent. This study contributes to the field by demonstrating how data science can improve web security practices, offering a proactive approach to detecting and mitigating cyber-attacks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.