DOI: 10.18297/etd/3164
|View full text |Cite
|
Sign up to set email alerts
|

An explainable sequence-based deep learning predictor with applications to song recommendation and text classification.

Abstract: Streaming applications are now the predominant tools for listening to music. What makes the success of such software is the availability of songs and especially their ability to provide users with relevant personalized recommendations. State of the art music recommender systems mainly rely on either Matrix factorization-based collaborative filtering approaches or deep learning architectures. Deep learning models usually use metadata for content-based filtering or predict the next user interaction (listening to… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 27 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?