Coronal rain is ubiquitous in flare loops, forming shortly after the onset of the solar flare. Rain is thought to be caused by a thermal instability, a localized runaway cooling of material in the corona. The models that demonstrate this require extremely long duration heating on the order of the radiative cooling time, localized near the footpoints of the loops. In flares, electron beams are thought to be the primary energy transport mechanism, driving strong footpoint heating during the impulsive phase that causes evaporation, filling and heating flare loops. Electron beams, however, do not act for a long period of time, and even supposing that they did, their heating would not remain localized at the footpoints. With a series of numerical experiments, we show directly that these two issues mean that electron beams are incapable of causing the formation of rain in flare loops. This result suggests that either there is another mechanism acting in flare loops responsible for rain, or that the modeling of the cooling of flare loops is somehow deficient. To adequately describe flares, the standard model must address this issue to account for the presence of coronal rain.