2008
DOI: 10.1137/070699767
|View full text |Cite
|
Sign up to set email alerts
|

An Explicit Bound On Double Exponential Sums Related to Diffie–Hellman Distributions

Abstract: Abstract. Let p be a prime and V an integer of order t in the multiplicative group modulo p. In this paper, we give an explicit bound on the double exponential sums.

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0
1

Year Published

2009
2009
2013
2013

Publication Types

Select...
2
1
1

Relationship

0
4

Authors

Journals

citations
Cited by 4 publications
(2 citation statements)
references
References 14 publications
0
1
0
1
Order By: Relevance
“…, X k ⊆ Z Z * m . Comments: J. Bourgain and M. Z. Garaev [32] and M.-C. Chang and C. Z. Yao [43] have recently obtained a series of very interesting results in this direction. Comments: There are amazingly strong and general results of J. Bourgain and M.-C. Chang, see [24,25,29], which apply to very short and general sums and thus have significantly reduced the interest to this question.…”
Section: Exponential Functionsmentioning
confidence: 99%
“…, X k ⊆ Z Z * m . Comments: J. Bourgain and M. Z. Garaev [32] and M.-C. Chang and C. Z. Yao [43] have recently obtained a series of very interesting results in this direction. Comments: There are amazingly strong and general results of J. Bourgain and M.-C. Chang, see [24,25,29], which apply to very short and general sums and thus have significantly reduced the interest to this question.…”
Section: Exponential Functionsmentioning
confidence: 99%
“…Бургейн [49] получил нетривиальную оценку при t > p ε для любой константы ε > 0. Чанг и Яо [56] получили явную оценку при t > p 1/4+ε . Из работы [57] известно, что нетривиальные оценки W имеют интересные приложения в уста-новлении свойств равномерного распределения чисел Мерсенна M n = 2 qn − 1 по модулю p, где q n обозначает n-е простое число.…”
unclassified