The existing investigations on the maximum allowable wellhead injection pressure have found the upper limit of wellhead injection pressure, which, however, cannot provide a practical operational designing scheme of wellhead injection parameters for CO 2 geological storage projects. Therefore, this work firstly proposes the complete constraint conditions of wellbore injection to realize the whole process of forward and inverse calculations of wellbore pressure and then applies it to explore the relationship between wellhead injection pressure and injection rate. The results show that the wellhead injection pressure and the injection rate are a pair of mutually constrained physical quantities. For a certain injection project, the allowable wellhead injection pressure and injection rate separately form a continuous interval. Change of one quantity within its allowable interval will also change the other within its interval, both jointly forming a closed region. Thus, controlling the wellhead injection parameters in this closed region can simultaneously ensure the effectiveness and safety of injection. Subsequently, this work further studies the factors of impacting the relationship between wellhead injection pressure and injection rate and finds that all the temperature of injected fluid, the parameters of saturation, and the characteristic parameters of reservoirs only change their upper and lower limits to some extent but have no essential effects on their relationship. Application of this theory and method in Shenhua CCS demonstration project obtained the relationship diagram of wellhead injection pressure and injection rate, which found that its actual injection parameters just fall into the closed region of the relationship diagram, effectively verifying the reliability of this work.