“…Torsion of a square cross section modeled as a right isoscles triangle:R ,where R={ x,y)|0 nnode=9,Nine node -linear convex quadrilaterals of Lagrange family elememts nnode=12,Twelve node -linear convex quadrilaterals of Serendipity family elememts nnode=16,Sixteen node -linear convex quadrilaterals of Lagrange family elememts exact solution of torisonal constant= 0.140577014955156) nnode=number of nodes in the triangular region R nel=number of elements in the region R - ----------------------------------------------------------------------------------------------------------------------------------------------------------- [3]quadrilateral_mesh4MOINEX_q12.m [4]quadrilateral_mesh4MOINEX_q16LG.m [5]D2LaplaceEquationQ12Ex3automeshgenNewContour.m√ [6]D2LaplaceEquationQ12Ex3automeshgenNewPolygonContour.m√ [7]D2LaplaceEquationQ16Ex3automeshgenNewContour.m√ [8]D2LaplaceEquationQ16Ex3automeshgenNewPolygonContour.m√ [9]polygonal_domain_coordinates_3rd_orderLG.m [10]polygonal_domain_coordinates_3rd_order.m [11]coordinate_special_quadrilaterals_in_stdtriangle_3rd_orderLAGR.m [12]coordinate_special_quadrilaterals_in_stdtriangle_3rd_order.m [13]integral_valuesof_localderivative_products.m [14] 1:nnode,1)=gcoord(1:nnode,1); ycoord(1:nnode,1)=gcoord(1:nnode,2); %extract coordinates for each element for i=1:nel for j=1:nnel x(1,j)=xcoord(nodes(i,j),1); y(1,j)=ycoord(nodes(i,j),1); end;%j loop xvec (1,1:5)=[x(1,1),x(1,2),x(1,3),x(1,4),x(1,1)]; yvec(1,1:5)=[y(1,1),y(1,2),y(1,3),y(1,4),y(1,1) (i),'\bf)']); end %*********************************** %***************************** end;%i loop switch tri case 1 xlabel('\bfx axis') ylabel('\bfy axis') st1='\bfone eigth (1/8)square cross section '; st2=' using '; st3='12-node cubic serendipity '; st4='quadriateral'; st5=' elements' title([st1,st2,st3,st4,st5]) case 2 xlabel('\bfx axis') ylabel('\bfy axis') st1='\bfone eigth (1/8)square cross section '; st2=' using '; st3='12-node cubic serendipity '; st4='quadriateral'; st5=' elements' title([st1,st2,st3,st4,st5]) case 3 xlabel('\bfx axis') ylabel('\bfy axis') st1='\bfequilateral triangular cross section '; st2=' using '; st3='12-node cubic serendipity '; st4='quadriateral'; st5=' elements' title([st1,st2,st3,st4,st5]) case 4 xlabel('\bfx axis') ylabel('\bfy axis') st1='\bfequilateral triangular cross section '; st2=' using '; st3='12-node cubic serendipity '; st4='quadriateral'; st5=' elements' title ([st1,st2,st3,st4,st5]) end %************************************** %********************************* scatter(x(1,1:nnel),y(1,1:nnel),15,'filled','g') %************************************************* end%for nmesh-the number of meshes …”