Modern non-smooth analysis is now roughly thirty-five years old. In this paper I shall attempt to analyse (briefly): where the subject stands today, where it should be going, and what it will take to get there? In summary, the conclusion is that the first order theory is rather impressive, as are many applications. The second order theory is by comparison somewhat underdeveloped and wanting of further advance. 1 It is not knowledge, but the act of learning, not possession but the act of getting there, which grants the greatest enjoyment. When I have clarified and exhausted a subject, then I turn away from it, in order to go into darkness again; the never-satisfied man is so strange if he has completed a structure, then it is not in order to dwell in it peacefully,but in order to begin another. I imagine the world conqueror must feel thus, who, after one kingdom is scarcely conquered, stretches out his arms for others.-Carl Friedrich Gauss (1777-1855). 2 1 Preliminaries and Precursors I intend to first discuss First-Order Theory, and then Higher-Order Theory-mainly second-order-and only mention passingly higher-order theory which really devolves to second-order theory. I'll finish by touching on Applications of Variational Analysis or VA both inside and outside Mathematics, mentioning both successes and limitations or failures. Each topic leads to open questions even in the convex case which I'll refer to as CA. Some issues are technical and specialized, others are