One-dimensional non-Darcy flow in a semiinfinite porous media is investigated. We indicate that the non-Darcy relation which is usually determined from experimental results can always be described by a piecewise linear function, and the problem can be equivalently transformed to a multiphase implicit Stefan problem. The novel feature of this Stefan problem is that the phases of the porous media are divided by hydraulic gradients, not the excess pore water pressures. Using the similarity transformation technique, an exact solution for the situation that the external load increases in proportion to the square root of time is developed. The study on the existence and uniqueness of the solution leads to the requirement of a group of inequalities. A similar Stefan problem considering constant surface seepage velocity is also investigated, and the solution, which we indicate to be uniquely existent under all conditions, is established. Meanwhile, the relation between our Stefan problem and the traditional multiphase Stefan problem is demonstrated. In the end, computational examples of the solution are presented and discussed. The solution provides a useful benchmark for verifying the accuracy of general approximate algorithms of Stefan problems, and it is also attractive in the context of inverse problem analysis.