To understand nuclear mRNA polyadenylation mechanisms in the model alga Chlamydomonas reinhardtii, we generated a data set of 16,952 in silico-verified poly(A) sites from EST sequencing traces based on Chlamydomonas Genome Assembly v.3.1. Analysis of this data set revealed a unique and complex polyadenylation signal profile that is setting Chlamydomonas apart from other organisms. In contrast to the high-AU content in the 39-UTRs of other organisms, Chlamydomonas shows a high-guanylate content that transits to high-cytidylate around the poly(A) site. The average length of the 39-UTR is 595 nucleotides (nt), significantly longer than that of Arabidopsis and rice. The dominant poly(A) signal, UGUAA, was found in 52% of the near-upstream elements, and its occurrence may be positively correlated with higher gene expression levels. The UGUAA signal also exists in Arabidopsis and in some mammalian genes but mainly in the far-upstream elements, suggesting a shift in function. The C-rich region after poly(A) sites with unique signal elements is a characteristic downstream element that is lacking in higher plants. We also found a high level of alternative polyadenylation in the Chlamydomonas genome, with a range of up to 33% of the 4057 genes analyzed having at least two unique poly(A) sites and $1% of these genes having poly(A) sites residing in predicted coding sequences, introns, and 59-UTRs. These potentially contribute to transcriptome diversity and gene expression regulation.