Digitalization of the AEC-FM industry has resulted in the reassessment of knowledge, knowledge management, teaching and learning, workflows and networks, roles, and relevance. Consequently, new approaches to teaching and learning to meet the demands of new jobs and abilities, new channels of communication, and a new awareness are required. Building Information Modelling (BIM) offers opportunities to address some of the current challenges through BIM-enabled education and training. This research defines the requisite characteristics of a BIM-enabled Learning Environment (BLE)—a web-based platform that facilitates BIM-enabled education and training—in order to develop a prototype version of the BLE. Using a mixed-methods research design and an Adaptive Structuration Theory (AST) perspective for interpreting the findings, 33 features and 5 distinct intentions behind those features were identified. These findings are valuable in taking forward the development of the BLE as they suggest a BLE requires the integration of functions from three existing types of information technology application (virtual learning environments, virtual collaboration platforms, and BIM applications). This study will inform the design of a web-based BLE for enhanced AEC-FM education and training, and it also provides a starting point for researchers to apply AST to evaluate the use of a BLE in different educational and training contexts.