The three-space theory of problem solving predicts that the quality of a learner's model and the goal specificity of a task interact on knowledge acquisition. In Experiment 1 participants used a computer simulation of a lever system to learn about torques. They either had to test hypotheses (nonspecific goal), or to produce given values for variables (specific goal). In the good- but not in the poor-model condition they saw torque depicted as an area. Results revealed the predicted interaction. A nonspecific goal only resulted in better learning when a good model of torques was provided. In Experiment 2 participants learned to manipulate the inputs of a system to control its outputs. A nonspecific goal to explore the system helped performance when compared to a specific goal to reach certain values when participants were given a good model, but not when given a poor model that suggested the wrong hypothesis space. Our findings support the three-space theory. They emphasize the importance of understanding for problem solving and stress the need to study underlying processes.