Incentive theory is extended to account for concurrent chained schedules of reinforcement. The basic model consists of additive contributions from the primary and secondary effects of reinforcers, which serve to direct the behavior activated by reinforcement. The activation is proportional to the rate of reinforcement and interacts multiplicatively with the directive effects. The two free parameters are q, the slope of the delay of reinforcement gradient, whose value is constant across many experiments, and b, a bias parameter. The model is shown to provide an excellent description of all results from studies that have varied the terminal-link schedules, and of many of the results from studies that have varied initial-link schedules. The model is extended to diverse modifications of the terminal links, such as varied amount of reinforcement, varied signaling of the terminal-link schedules, and segmentation of the terminal-link schedules. It is demonstrated that incentive theory provides an accurate and integrated account of many of the phenomena of choice.