Semiconductor light sources technology has seen tremendous strides in recent decades and a rapidly increasing interest in it. The unique advantages and characteristics of this form of light generation include compactness, high efficiency, and reliability. With these recent advancements, light-emitting diodes (LEDs), laser diodes, and superluminescent diodes (SLDs) have become an indispensable part of our homes, factories, and research facilities. In particular, the sensitivity of the human eye to the visible range of the electromagnetic spectrum ranging from 400 to 700 nm and the wavelength-dependence of optical characteristics of materials make visible light required for a plethora of applications ranging from displays for entertainment, to imaging in the medical field, to light-based atomic clocks. While LEDs are the most commonly found type of semiconductor light sources, laser diodes and SLDs are of special interest due to their higher output optical power, spectral purity, and coherence. In this tutorial, we first go over the main unique characteristics of the different types and configurations of visible-light laser diodes and SLDs and their general structures with a focus on their advantages compared to LEDs. We then discuss the applications in which these characteristics are of great interest in the fields of displays, communication, instrumentation, and photonic integrated circuits.