2011
DOI: 10.1016/j.eswa.2010.07.049
|View full text |Cite
|
Sign up to set email alerts
|

An extended support vector machine forecasting framework for customer churn in e-commerce

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
46
0
4

Year Published

2014
2014
2022
2022

Publication Types

Select...
5
4

Relationship

0
9

Authors

Journals

citations
Cited by 85 publications
(50 citation statements)
references
References 13 publications
0
46
0
4
Order By: Relevance
“…Machine learning techniques have also been compared for customer churn prediction (Vafeiadis, Diamantaras, Sarigiannidis, & Chatzisavvas, 2015). Many researchers have tried to improve prediction performance and integrate different kinds of classification methods such as SVMs (Gordini & Veglio, 2017;Yu, Guo, Guo, & Huang, 2011), random forest, and neural network (NN) methods (Han et al, 2006). Tsai and Chen (2010) used association rules to select prediction factors, and then they constructed a churn prediction model by NNs and decision trees for multimedia on demand customers.…”
Section: Customer Churn Predictionmentioning
confidence: 99%
“…Machine learning techniques have also been compared for customer churn prediction (Vafeiadis, Diamantaras, Sarigiannidis, & Chatzisavvas, 2015). Many researchers have tried to improve prediction performance and integrate different kinds of classification methods such as SVMs (Gordini & Veglio, 2017;Yu, Guo, Guo, & Huang, 2011), random forest, and neural network (NN) methods (Han et al, 2006). Tsai and Chen (2010) used association rules to select prediction factors, and then they constructed a churn prediction model by NNs and decision trees for multimedia on demand customers.…”
Section: Customer Churn Predictionmentioning
confidence: 99%
“…Customer Churn didefinisikan sebagai kecenderungan pelanggan untuk berhenti melakukan bisnis dengan sebuah perusahaan [1]. Hal ini telah menjadi isu penting yang merupakan salah satu tantangan utama oleh banyak perusahaan di era global ini dan harus dihadapinya.…”
Section: Pendahuluanunclassified
“…Beberapa teknik data mining yang populer diusulkan untuk memprediksi Customer Churn adalah K-NN [2], [8], [33], Support Vector Machines [1], [2], [33][34][35] dan Logistic Regretion [2], [33][34][35].…”
Section: Pendahuluanunclassified
“…Finally, lift coefficient shows the precision of model where CP represents the real churn percentage in the data set. The higher the lift is, the more accurate the model is [28]. …”
Section: Evaluation Measuresmentioning
confidence: 99%