2005
DOI: 10.1007/11496656_16
|View full text |Cite
|
Sign up to set email alerts
|

An Extension of the Burrows Wheeler Transform and Applications to Sequence Comparison and Data Compression

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

0
53
0

Year Published

2005
2005
2018
2018

Publication Types

Select...
5
3

Relationship

1
7

Authors

Journals

citations
Cited by 35 publications
(53 citation statements)
references
References 10 publications
0
53
0
Order By: Relevance
“…In this section we recall the definition of an extension of the Burrows-Wheeler transform (called ebwt) to a multiset S of primitive words that, as the original bwt, is defined on conjugates (see [16,17]). The ebwt has been inspired by a remark in [6], where the authors pointed out that the bwt coincides with a particular case of a bijection defined in [10].…”
Section: Generalizations Of Bwt To a Multiset Of Wordsmentioning
confidence: 99%
See 2 more Smart Citations
“…In this section we recall the definition of an extension of the Burrows-Wheeler transform (called ebwt) to a multiset S of primitive words that, as the original bwt, is defined on conjugates (see [16,17]). The ebwt has been inspired by a remark in [6], where the authors pointed out that the bwt coincides with a particular case of a bijection defined in [10].…”
Section: Generalizations Of Bwt To a Multiset Of Wordsmentioning
confidence: 99%
“…In [16], the authors give an extension of the bwt (called ebwt) to a multiset S of words on the alphabet Σ, suggested by the remark given in [6], that the bwt coincides with a particular case of a bijection defined in [10] by Gessel and Reutenauer. The ebwt of a multiset S is a word obtained by a letters permutation of the words in S induced by the sorting of the conjugates of words in S according with an order relation (denoted by ≺ ω ) defined by using lexicographic order among infinite words.…”
Section: Introductionmentioning
confidence: 98%
See 1 more Smart Citation
“…Other notable contributions to the BWT research arena include: the BWT is shown to be a special case of the Gessel and Reutenauer transformation [9]; a generalization of the BWT suitable for a multiset of words and applied to the problem of the whole mitochondrial genome phylogeny is given in [31]; slashing the time for the BWT inversion is presented in [21]; and a constant-space comparison-based algorithm for computing the BWT is proposed in [10].…”
Section: The Burrows-wheeler Transformmentioning
confidence: 99%
“…Notably the transform has the property that it tends to cluster occurrences of the same letter in the input string into repetitions (runs), and moreover, that it is reversible. Due to this data-clustering property, the Burrows-Wheeler Transform finds wideranging applications in: preprocessing for data compression (it is also called block-sorting compression) and it is core to the bzip2 family of text compressors; bioinformatics and sequence processing [BCRS13,MRRS05]; and text indexing [FM00] -indeed the versatility of the transform is increasing to include, for instance, multimedia information retrieval [ABM08].…”
Section: Introductionmentioning
confidence: 99%